65,249 research outputs found

    A critical assessment of marine aquarist biodiversity data and commercial aquaculture:identifying gaps in culture initiatives to inform local fisheries managers

    Get PDF
    It is widely accepted that if well managed, the marine aquarium trade could provide socio-economic stability to local communities while incentivising the maintenance of coral reefs. However, the trade has also been implicated as having potentially widespread environmental impacts that has in part driven developments in aquaculture to relieve wild collection pressures. This study investigates the biodiversity in hobbyist aquaria (using an online survey) and those species currently available from an aquaculture source (commercial data and hobbyist initiatives) in the context of a traffic light system to highlight gaps in aquaculture effort and identify groups that require fisheries assessments. Two hundred and sixty nine species including clown fish, damsels, dotty backs, angelfish, gobies, sea horses and blennies, have reported breeding successes by hobbyists, a pattern mirrored by the European and US commercial organisations. However, there is a mismatch (high demand and low/non-existent aquaculture) for a number of groups including tangs, starfish, anemones and hermit crabs, which we recommend are priority candidates for local stock assessments. Hobbyist perception towards the concept of a sustainable aquarium trade is also explored with results demonstrating that only 40% of respondents were in agreement with industry and scientists who believe the trade could be an exemplar of a sustainable use of coral reefs. We believe that a more transparent evidence base, including the publication of the species collected and cultured, will go some way to align the concept of a sustainable trade across industry stakeholders and better inform the hobbyist when purchasing their aquaria stock. We conclude by proposing that a certification scheme established with government support is the most effective way to move towards a self-regulating industry. It would prevent industry "greenwashing" from multiple certification schemes, alleviate conservation concerns, and, ultimately, support aquaculture initiatives alongside well managed ornamental fisheries

    Charge-exchange mechanisms at the threshold for inelasticity in Ne+ collisions with surfaces

    Get PDF
    We present a study on scattering of 100–1400 eV Ne+ ions off Mg, Al, Si, and P surfaces. Exit energy distributions and yields of single-scattered Ne+ and Ne2+ were separately measured to investigate charge exchange mechanisms occurring at the onset of inelastic losses in binary hard collision events. At low incident energies, collisions appear elastic and projectile ion survival is dominated by nonlocal Auger-type neutralization involving the target valence band. However, once a critical Rmin (distance of closest approach) is reached, three phenomena occur simultaneously: Ne2+ generation, reversal of the Ne+ yield trend, and inelastic losses in Ne+ and Ne2+. Rmin values for the Ne2+ turn-on agree very well with the L-shell overlap distances of the colliding partners, suggesting that electron transfer involving the highly promoted 4fsigma molecular orbital (correlated to the Ne 2p) at close internuclear distance (~0.5 Å) is responsible. For the Ne+ yield, a clear transition from nonlocal neutralization to Rmin-dependent collision induced neutralization was observed. Binary collision inelasticities (Qbin) were evaluated for Ne+ and Ne2+ off Al and Si by taking into account electron straggling. Saturation-like behavior at RminNe** (2p43s2, 41–45 eV) and Ne+-->Ne+** (2p33s2/3s3p, 69–72 eV), followed by autoionization as the projectile leaves the surface region to give Ne+ and Ne2+. In contrast, Qbin values for Ne2+ at the +2 turn-on were seen much lower (35–40 eV off Al, 55–60 eV off Si) than that required for double promotion—eliminating the possibility that Ne2+ is only generated in double excitation of surviving Ne+. Thus single-electron excitation appears to be more important in the threshold region compared to the two-electron events seen at higher collision energies. In addition, the Ne+[Single Bond]P system shows striking similarities with the other target cases from the perspective of a well-defined Ne2+ turn-on, continually increasing Ne2+ yield with impact energy, and inelasticity values which point to the same 4fsigma excitation pathway. The decreasing Rmin requirement for higher target Z in terms of Ne2+ production has been confirmed for the Mg through P series, where hard collision excitation is governed by L-shell orbital overlaps

    Low-energy ion beamline scattering apparatus for surface science investigations

    Get PDF
    We report on the design, construction, and performance of a high current (monolayers/s), mass-filtered ion beamline system for surface scattering studies using inert and reactive species at collision energies below 1500 eV. The system combines a high-density inductively coupled plasma ion source, high-voltage floating beam transport line with magnet mass-filter and neutral stripping, decelerator, and broad based detection capabilities (ions and neutrals in both mass and energy) for products leaving the target surface. The entire system was designed from the ground up to be a robust platform to study ion-surface interactions from a more global perspective, i.e., high fluxes (>100 µA/cm2) of a single ion species at low, tunable energy (50–1400±5 eV full width half maximum) can be delivered to a grounded target under ultrahigh vacuum conditions. The high current at low energy problem is solved using an accel-decel transport scheme where ions are created at the desired collision energy in the plasma source, extracted and accelerated to high transport energy (20 keV to fight space charge repulsion), and then decelerated back down to their original creation potential right before impacting the grounded target. Scattered species and those originating from the surface are directly analyzed in energy and mass using a triply pumped, hybrid detector composed of an electron impact ionizer, hemispherical electrostatic sector, and rf/dc quadrupole in series. With such a system, the collision kinematics, charge exchange, and chemistry occurring on the target surface can be separated by fully analyzing the scattered product flux. Key design aspects of the plasma source, beamline, and detection system are emphasized here to highlight how to work around physical limitations associated with high beam flux at low energy, pumping requirements, beam focusing, and scattered product analysis. Operational details of the beamline are discussed from the perspective of available beam current, mass resolution, projectile energy spread, and energy tunability. As well, performance of the overall system is demonstrated through three proof-of-concept examples: (1) elastic binary collisions at low energy, (2) core-level charge exchange reactions involving 20Ne+ with Mg/Al/Si/P targets, and (3) reactive scattering of CF2+/CF3+ off Si. These studies clearly demonstrate why low, tunable incident energy, as well as mass and energy filtering of products leaving the target surface is advantageous and often essential for studies of inelastic energy losses, hard-collision charge exchange, and chemical reactions that occur during ion-surface scattering

    Evidence of Simultaneous Double-Electron Promotion in F+ Collisions with Surfaces

    Get PDF
    A high-flux beam of mass-filtered F+ at low energy (100–1300 eV) was scattered off Al and Si surfaces to study core-level excitations of F0 and F+. Elastic scattering behavior for F+ was observed at energies 450 (700) eV off Al (Si) produces F2+—behavior which is remarkably similar to Ne+ off the same surfaces. Inelasticities measured for single collision events agree well with the energy deficits required to form (doubly excited) F** and F+** states from F0 and F+, respectively; these excited species most likely decay to inelastic F+ and F2+ via autoionization

    Finite size scaling of the bayesian perceptron

    Full text link
    We study numerically the properties of the bayesian perceptron through a gradient descent on the optimal cost function. The theoretical distribution of stabilities is deduced. It predicts that the optimal generalizer lies close to the boundary of the space of (error-free) solutions. The numerical simulations are in good agreement with the theoretical distribution. The extrapolation of the generalization error to infinite input space size agrees with the theoretical results. Finite size corrections are negative and exhibit two different scaling regimes, depending on the training set size. The variance of the generalization error vanishes for N→∞N \rightarrow \infty confirming the property of self-averaging.Comment: RevTeX, 7 pages, 7 figures, submitted to Phys. Rev.

    A New Technique for System-to-system Transfer of Surface Data

    Get PDF
    The purpose is to describe a recently developed technique aimed at providing a universal interface between surface types. In brief, a software package was developed which functions a common denominator of CAD/CAM surface types. This software enable one to convert from any given surface representation to any other target representation. The tiles maintain the same slope continuity as the target surface gram, bicubic patches are used since they allow one to match point, slope, and twist vectors to the target surface. Thus, slopes can be continuous or discontinuous as they are on the target surface. The patches can be of lower order if desired. For example, if only point information is available, the patches produced will be bilinear; however, the number of patches required is likely to increase correspondingly. The patches can be of higher order although many systems will not accept patches of more than order four. The final result of the program is a rectangular grid of bicubic patches. The patches fit the target surface exactly at their corners. Also, the patch corners have the same tangent and twist vectors. Adjacent patches will have slope continuity, unless a discontinuity was indicated by the target surface

    Stability of trapped fermionic gases with attractive interactions

    Full text link
    We present a unified overview, from the mean-field to the unitarity regime, of the stability of a trapped Fermi gas with short range attractive interactions. Unlike in a system of bosons, a Fermi gas is always stable in these regimes, no matter how large the particle number. However, when the interparticle spacing becomes comparable to the range of the interatomic interactions, instability is not precluded.Comment: 5 pages, 4 figure

    Fixed Investment in the American Business Cycle, 1919-83

    Get PDF
    Contributions are made by this paper in three areas, methodological, data creation, and empirical. The methodological section finds that, while structural model building exercises may be useful in suggesting lists of variables that may play an explanatory role in investment equations, they generally achieve identification of structural parameters only by imposing arbitrary and unbelievable simplifying assumptions and exclusion restrictions.The paper advocates a hybrid methodology combining guidance from traditional structural models on the choice and form of explanatory variables to be included, with estimation in a reduced-form format that introduces all explanatory variables and the lagged dependent variable with the same number of unconstrained lag coefficients. The second contribution is the use of a new set of quarterly data for major expenditure categories of GNP extending back to 1919. The data file also contains quarterly data back to 1919 for other variables, including the capital stock, interest rates, the cost of capital including tax incentive effects, a proxy for Tobin's "Q", and the real money supply.The empirical results support the view that there are two basic impulses in the business cycle, real and financial.The real impulse appears in our statistical evidence as an autonomous innovation to investment in structures. We interpret these structures innovations as due in turn to changes in the rate of population growth, episodes of speculation and overbuilding, and Schumpeterian waves of innovation.The financial impulse works through the effect on investment of changes in the money supply, as well as the real interest rate (in the case of postwar investment in durable equipment).There is a strong role for the money supply as a determinant of investment behavior, relative to such other factors as the user cost of capital or Tobin's "Q". The role of the money supply is interpreted as primarily reflecting the banking contraction of 1929-33 and the episodes of credit crunches and disintermediation in the postwar years. Another feature of the empirical work is the attention paid to aggregation. Coefficient estimates are more stable when four types of investment expenditures are aggregated along the structures-equipment dimension than along the household-business dimension. Historical decompositions highlight the role of autonomous innovations in structures investment and in the money supply, and an inspection of residuals suggests that the main autonomous downward shift in spending in 1929-30 was in fixed investment, not nondurable consumption.
    • …
    corecore